Металлопрокат на складе «М-Комплект» (044)490-04-88 (044)490-04-89

Сварка алюминия и его сплавов

Оксидная пленка

Нельзя так посто взять и сварит алюминиийАлюминий имеет сравнительно низкую температуру плавления (657°C) при довольно высокой теплопроводности, которая примерно в три раза превосходит теплопроводность малоуглеродистой стали. Алюминий отличается также значительным коэффициентом теплового расширения. Главным затруднением при сварке алюминия является лёгкая его окисляемость в твердом и жидком состояниях. Тугоплавкий и механически прочный окисел Аl203 плавится при температуре 2050°C, что превышает температуру кипения алюминия. Окись алюминия представляет собой прочное химическое соединение, которое слабо поддаётся действию флюсующих материалов, ввиду своего химически нейтрального характера. Оксид алюминия не растворяется ни в твердом, ни в жидком алюминии, его плотность составляет 4,0 г/см3 у гексагональной α-фазы и 3,77 г/см3 у кубической γ-фазы, что превышает плотность алюминия. Оксидная пленка не всплывает на поверхность жидкого алюминия и остается после застывания внутри шва в виде твердых и хрупких интерметаллидных включений. Это нарушает однородность при формировании сварного шва, снижает прочность и коррозионную стойкость сварного соединения.

Оксидная пленка на поверхности свариваемых деталей и присадочной проволоки адсорбирует водяные пары из воздуха. γ-оксид Аl203 сохраняет некоторое количество воды даже после выжержки при 890-900°С. Вода реагирует с жидким алюминием и выделяет водород, который растворяется в расплаве. При застывании расплава алюминия снижается растворимость водорода, что может создать пористую структуру шва. При концентрации оксида алюминия в сварочной ванне ниже 0,001% пузырьковое газовыделение прекращается. Поэтому для получения качественного металла шва необходимо рафинировать сварочную ванну не только от водорода, но и от мелкодисперсной оксидной пленки.

Подготовка поверхности

Подготовка поверхности свариваемых деталей и электродной проволоки существенно влияет на качество сварного соединения.

Жировую консервационную смазку удаляют промывкой в водном растворе каустической соды или в бензине. После промывки раствором соды необходима длительная и тщательная промывка проточной водой для предотвращения появления коррозии. Свариваемую поверхность обезжиривают ацетоном, уайт-спиритом, авиационным бензином или другим растворителем на ширину 100-150 мм от кромки.

Пленку оксида удаляют механическими средствами или химическим травлением. Зачистка кромок на ширину 25-30 мм стальными нержавеюшими щётками или шабровкой предпочтительнее, чем обработка наждачной бумагой или абразивным кругом. Абразивный инструмент загрязняет шов — в качестве твердого наполнителя в абразивных кругах и наждаке использую карбид кремния SiC или α-оксид алюминия Аl203 (корунд), от которого и надо избавиться.

Пленку удаляют химическим способом в реактиве: 50 г едкого натра технического + 45 г фтористого натрия технического на 1л воды. Заготовки травят в течение 0,5—1 минуты, после травления детали промывают в проточной воде. Сплавы с магнием АМг и цинком В95 осветляют в 25%-ном растворе ортофосфорной кислоты, а сплав АМц — в 30-35%-ном растворе азотной кислоты. Время осветления 1—2  минуты. После детали промывают в проточной воде и сушат потоком воздуха с температурой 80—90°С.

Подготовка проволоки

Сварочную проволоку обезжиривают растворителем и травят в 15% растворе едкого натра технического в течении 5-10 мин при температуре 60—70°С с последущей промывкой холодной водой и сушкой. Проволоку дегазируют в течение 5—10ч при температуре 350°С в вукууме 0,133Па. Вместо вакумной сушки проволоку прокаливают 10—30 мин на воздухе при температуре 300°С.

Другой метод очистки сварочной проволоки — электрополировка в электролите: 70 мл Н3PO4+42 г Cr2O3при температуре 95—100°С. Величина тока завмсмт от скорости протяжки и диаметра проволоки для сварки.

Порогревание проволоки в аргоне при 200—400°С в течение 30—80 мин после химическй обработки уменьшает количество поглощеной влаги в 5 раз.

Ручная сварка:

Газовая сварка и флюсы для сварки алюминия

Газовая сварка алюминия и сплавав алюминия применяют для соединения крупных слабонагруженных деталей, для заварки дефектов литья. Флюсы вводят в процессе сварки с присадочным прутком или наносят пасту на кромки свариваемого изделия. Пасту разводят на воде или спирте.

При ремонте толстостенных малонагруженных алюминиевых отливок или неответственных деталей можно иногда обходиться без специального флюса. При этом окись алюминия всё время очищается с поверхности ванны скребком из стальной проволоки, а конец присадочного прутка для уменьшения окисления погружается в сварочную ванну. В нормальных случаях необходимо применение специальных флюсов для сварки алюминия, энергично удаляющих окись алюминия при низких температурах. Флюс при сварке алюминия имеет исключительно важное значение. До изобретения хороших флюсов сварка алюминия считалась настолько трудно выполнимой, что почти не применялась на практике. Особенно сильными растворителями являются для окиси алюминия галоидные соединения щелочного металла лития. Во флюсы для сварки алюминия чаще всего вводится хлористый или фтористый литий — LiCl или LiF.

Разработка флюсов для сварки алюминия до сих пор не может считаться вполне законченной, и ведутся работы по изысканию новых, более совершенных составов флюса. Практически качество алюминиевого флюса может быть оценено следующей простой пробой. Расплавляют газовой горелкой небольшую ванночку на пластине алюминия, металл покрыт плёнкой окисла и имеет матовую тусклую сероватую поверхность. При подаче щепотки хорошего флюса на ванну, поверхность её почти мгновенно очищается и становится блестящей, белого серебристого цвета, напоминая по виду ртуть или расплавленное серебро. Хороший флюс очищает также и нагретый нерасплавленный основной металл вокруг ванны.

                           
Составы флюсов
Компонент Марка флюса
АФ-4А АН-А201 ВАМИ КМ-1 №1 №2 №3 №4 №5 №6
Хлористый натрий 28 30 20 33 19 41 45 35 30
Хлористый калий 50 50 45 45 29 51 30 48 45
Хлористый литий 14 15 15 10 9 15
Хлористый барий 70 20 48
Фтористый натрий 8 15 8 8 10
Фтористый кальций 4
Фтористый литий 15
Фтористый калий 7 15
Фтористый алюминий
Фтористый магний
Фтористый барий
Криолит 20
Оксид магния

Флюсы и обмазки для сварки алюминия должны изготовляться из химически чистых препаратов. Некоторые флюсы изготовляются путём тщательного перемешивания с одновременным размолом компонентов, например, в шаровой мельнице с фарфоровым корпусом и шарами. Для других флюсов рекомендуется предварительно сплавить компоненты и затем размалывать полученный однородный сплав. Изготовление сплавлением часто даёт лучшие результаты и меньшую гигроскопичность флюсов. Алюминиевые флюсы чувствительны к воздействию влажности воздуха, под влиянием которой они меняют свой состав и свойства. Поэтому алюминиевые флюсы должны сохраняться плотно закупоренными в стеклянных банках с притёртой пробкой. Для работы сварщик берёт количество флюса не более чем на одну смену.

Ручная сварка покрытым электродом

Этот метод применяют при сварке малонагруженных конструкций из алюминия технической чистоты, из сплавов АМц, АМг, АМг2, АМг3, АМг5 и силумина АК12. Металл сваривают постоянным током обратной полярности с предварительным подогревом заготовки от 250 до 400°C в завасимости от толщины свариваемого материала. Минимальные толщина при сварке покрытым электродом составляют 4 мм. Разделку кромок выполняют при толщине более 20мм

Хлористые и фористые соли, которые входят в состав обмазки электродов для ручной сварки алюминия, понижают устойчивость электродуги, поэтому сварку ведут на пастоянном токе обратной полярности. Обмазка адсорбирует влагу и электроды необходимо подготавливать непосредствено перед сваркой и хранить в сухом воздухе.

Автоматическая сварка с флюсом:

Дуговая сварка над флюсом

Автоматическая сварка алюминия и его сплавов по слою флюса (полуоткрытая дуга) плавящимся электродом обеспечивет высокую производительностью за счет применения однопроходной двухсторонней сварки. Высокая концентрация энергии при сварке над флюсом создает глубокое проплавление свариваемого металла, отпадает треблвание скашивать кромки деталей толщиной 20-25мм. Энергия дуги достаточна для прогрева свариваемых кромок и заготовки не надо подогревать перед сваркой.

Для сварки алюминия и алюминиевых сплавов под флюсом применяют, как правило, плавленные флюсы. Плавленные флюсы уменьшают пористость шва, но ушудшают его формирование по сравнения с механически перемешанными флюсами. Флюсы хранят в герметичной таре и прокаливают перед использованием.

Обезвоживание флюса перед сваркой не полностью устраняет влияние влаги на качество сварки, так так открытая сварочная дуга способствует насыщению расплава алюминия в сварочной ванне водородом из влаги воздуха. Сварка открытой дугой по слою флюса загрязняет рабочую атмосверу пылью, продуктами горения, озоном, оксидами азота и ультрафиолетовым излучением. Концентрация озона при автоматической сварке по слою флюса на уровне дыхания сварщика превышает норму в 8 - 10 раз и только на расстоянии свыше 1,8 м от места горения дуги достигает нормы . Сварочное оборудование при сварке открытой дугой работает в тяжелых условиях.

                             
Компонент Марка флюса
для сварки по слою флюса для сварки под флюсом (керамические флюсы)
АН-А1 АН-А4 48-АФ-1 МАТИ-1а МАТИ-10 ЖА-64 ЖА-64А
Хлористый натрий 20 17 15
Хлористый калий 50 57 47 47 З0 43 38
Хлористый литий 8
Хлористый барий 28 47 68
Фтористый натрий 42
Фтористый калий 2
Фтористый литий 7,5
Фтористый кальций 3
Фтористый алюминий 7,5
Криолит 30 3 2 36 43
Фторцирконат калия 2
Песок кварцевый 4 ≤1
Оксид хрома 2

Дуговая сварка под флюсом

Дуговой сварка под слоем керамического флюса (закрытой дугой) с плавящимся электродом имеет преимущества перед сваркой над флюсом. Сварка закрытой дугой значительно уменьшает вредные выделения в окружающую среду. Мощный и концентрированный источник энергии имеет закрытую зону электродуги от воздействия наружного воздуха. Состав газовой фазы в зоне дуги можно контролировать. Активные добавки в керамический флюс легируют, модифицируют и очищают алюминий в зоне расплава. Плотность тока при сварке закрытой дугой в 2-4 раза выше, чем при сварке открытой дугой, благодаря чему материал плавится на большую глубину.

Дуговая сварка в среде защитных газов:

TIG сварка неплавящимся электродом

В промышленности наибольшее распространение получили два вида сварки: TIG сварка неплавящимся вольфрамовым электродом с присадкой в среде инертных газов, и MIG сварка сплошной проволокой в среде инертных газов с автоматической или полуавтоматической подачей проволоки. Оксидная пленка разрушается при сварке переменным или постоянным током обратной полярности. В этом случае происходит катодное распыление, которое разбивает оксидную пленку. Сваривать постоянным током прямой полярности возможно только в гелиевой среде, где возникают условия для испарения окисной пленки.

Аргонодуговая сварка неплавящимся вольфрамовым электродом с подачей присадочной проволоки (TIG) может проводить на малых токах (от 5 А) и обеспечивать высокую устойчивость горения дуги для всех величин токов.

Для процесса TIG применяют источник питания с внутренним генератором переменного тока. Источник питания для аргонодуговой TIG-сварки регулирует частоту и баланс переменного тока. Регулировка частоты тока устраняет прожигание тонких деталей. Баланс тока обеспечивает при сварке неплавящимся электродом особые условия горения дуги. В первом полупериоде вольфрам становится катодом и создаются условия для увеличения термоэлектронной эмисси. Это увеличивает силу тока и снижает напряжение дуги. Во втором полупериоде катодом становится свариваемая заготовка, проводимость дугового промежутка снижается, уменьшается сила тока дуги и возрастает напряжение. Синусоида тока дуги получается несимметричной — прямая полярность генерирует мощную дугу для плавления металла, а обратная проводит катодную обработку, которая удаляет оксид с поверхности алюминия.

Импульсные источников питания для сварки алюминиевых сплавов расширили возможности сварки неплавящимся электродом. При сварке импульсной дугой на переменном токе удается сваривать алюминиевые сплавы толщиной от 0,2 мм и выше.

Сварку неплавящимся вольфрамовым электродом на постоянном токе прямой полярности проводят в среде гелия. Прямая полярность и низкая теплопроводность гелия генерируют дугу с высокой концентрацией тепловой энергии. При этом получаются узкие швы и малая зона термического влияния, что важно для повышения прочности соединений в темоупрочняемых сплавах алюминия. Проплавляющая способность дуги в гелии сваривает детали до 20мм без разделки кромок.

Для сварки алюминиевых сплавов в среде защитных газов применяют аргон высшего сорта или смеси аргона с гелием.

Металл толщиной до 2 мм в нижнем положении сваривают в один проход без присадочного материала на подкладках м длина дуги не более 3 мм. Металл толщиной 4–8 мм сваривают «левым способом». Сварка неплавящимся электродом металла с толщиной боле 8 мм используют «правый способ».

Для дуговой сварки неплавящимся электродом применяют электроды из лантанированного (ЭВЛ), иттрированного (ЭВИ), торированного (ЭВТ) или чистого вольфрама (ЭВЧ). Наибольшую стойкость и сварочный ток показывают электроды ЭВИ. Этими электродами сваривают за один проход заготовки с толщиной 20 мм при сварочном токе 800-1000 А.

MIG сварка плавящимся электродом

Автоматической и полуавтоматической сваркой плавящимся электродом получают стыковые, тавровые, нахлесточные и других соединений алюминия и сплавов алюминия толщиной 3—6 мм и более. Детали тоньше 3 мм соединяют импульсно‑дуговой сваркой при мелкокапельном струйном переносе металла. Автоматическая сварка преимущественно ведется для металла толщиной 10—12 мм и более. Экономическая целесообразность применения сварки плавящимся электродом возрастает с увеличением толщины свариваемых заготовок. Высокую производительность процесса обеспечивает глубокое проплавление. Этим способом сварки удается получать надежное проплавление корня шва при сварке тавровых и нахлесточных соединений.

Сварка плавящимся электродом проходит в защитной среде инертных газов — в аргоне, гелии или их смеси. Дуга питается постоянным током обратной полярности дляудаления пленки оксидов, когда плавящийся электрод будет анодом, а свариваемый металл — катодом. Оксидную пленку разрушают и распыляют положительные ионы, которые бомбардируют катод (эффект катодного распыления).

Недостаток способа сварки алюминия плавящимся электродом — снижение по сравнению со сваркой неплавящимся электродом показателей механических свойств. Для сплава АМг6 предела прочности уменьшается на 15 %. Прочность шва ухудшается, так как электродный металл проходит через дуговой промежуток и перегревается в большей степени, чем присадочная проволока при сварке неплавящимся электродом.

Преимущество этого способа сварки в том, что металл хорошо перемешивается в сварочной ванне, поэтому шов лучше очищается от оксидных включений. Сварки алюминия плавящимся электродом обеспечивает высокую производительность.

При импульсно-дуговой сварке плавящимся электродом на постоянный ток обратной полярности накладываются кратковременные импульсы тока. Импульсное устройство регулирует частоту следования и величину импульсов тока для получения мелкокапельного направленного переноса электродного металла через дугу. Капли переносятся при более низких значениях сварочного тока, чем при естественном мелкокапельном переносе. Величина и длительность импульсов управляет переносом металла с торца электрода небольшими каплями в широком диапазоне токов. Импульсы тока воздействуют на ванну жидкого металла, создают более мелкую структуру металла шва. В паузах между импульсами постояная составляющая тока поддерживает горение сварочной дуги, при котором ввод теплоты в изделие уменьшается и отсутствует перенос металла.

Особенности сварки сплавов алюминия

В технике применяются различные сплавы алюминия, которые обладают более высокой механической прочностью по сравнению с прочностью чистого алюминия и сохраняют  невысокую плотность  (2,65—2,8 г/см3). Алюминиевые сплавы разделены на две группы: сплавы термически не упрочняемые и сплавы термически упрочняемые. Термически не упрочняемые сплавы мало чувствительны к термической обработке, их сварное соединение приближается к прочности основного металла в отожжённом состоянии.

Сплав Толщина мм Образец Состояние образца σ0,2, МПа
при Т, °С
20 200 250
АД1 1,5 Основной металл Отожженный 86,3
Сварное соединение Отожженный после сварки 83,4
АМц 1,5 Основной металл Отожженный 118,7
Сварное соединение Отожженный после сварки 118,7
Основной металл Полунагартованный 186,4
Сварное соединение Полунагартованный после сварки 117,7
АМг3 2,0 Основной металл Отожженный 230,5
Сварное соединение Отожженный после сварки 220,7
АМг6 2,0 Основной металл Отожженный 361,0 201,1 145,1
Сварное соединение Отожженный после сварки 367,9 206,0 174,6
Основной металл Нагартованный 459,1 260,0
Сварное соединение Нагартованный после сварки 359,0 255,0
Д20 2,0 Основной металл Закаленный и искусственно состаренный 443,4 343,4
Сварное соединение Закаленный и искусственно состаренный после сварки 272,7 235,4

Все способы и режимы сварки плавящимся электродом технического алюминия пригодны и для термически неупрочняемых алюминиевых сплавов типа АМц и АМг. При сварке высокопрочных алюминиевых сплавов и особенно термически упрочненного основного металла в каждом конкретном случае подбирают способы увеличения коэффициента прочности сварных соединений и повышения стойкости шва и околошовной зоны против образования трещин и устранения других дефектов: выбор присадочной проволоки оптимального состава, подбор режимов сварки, рациональный порядок выполнения швов, предварительный и сопутствующий подогрев и др. Внедение модификаторов (цирконий, титан, бор) в проволоку резко повышает стойкость швов против образования кристаллизационных трещин. Для ряда высоколегированных сплавов (например, систем Al—Mg и Al—Cu) хорошие результаты дает применение проволоки с пониженным содержанием сопутствующих примесей. В ряде случаев удовлетворительные свойства швов на высокопрочных сплавах получают при сварке проволокой, которая отличается по составу от основного металла (например, проволока марки СвАК5 для сплавов типа АВ, АД31, АДЗЗ).

Заметно снижается прочность  сварных соединений по сравнению с прочностью основного металла при сварке сплавов в нагартоваином состоянии, особенно при сварке высоколегированных термически упрочняемых  сплавов. В этом случае коэффициент прочности сварных соединений составляет 0,5—0,65. Существенное повышение прочности сварных соединений в этом случае достигается путем термической обработки — закалки  с последующим старением или только естественного старения. Усталостная прочность сварных соединений из   алюминиевых   сплавов заметно снижается по сравнению с прочностью основного металла, Швы со снятым усилением имеют усталостную прочность выше, чем швы с усилением.

Из сплавов, упрочняемых термически, важнейшим является дуралюминий, широко применяемый в самолётостроении и имеющий ряд разновидностей с пределом прочности от 38 до 46 кг/мм2. Задача сварки этого важнейшего сплава до сих пор не разрешена полностью. Дуралюминий представляет собой в основном сплав алюминия с медью и магнием, образующих интерметаллические соединения. Растворимость этих соединений в алюминии зависит от температуры. При нагреве алюминия до температуры выше критической, соединения полностью растворяются в металле и остаются в нём в таком виде при быстром охлаждении, т. е. происходит закалка сплава. При последующем старении раствор соединений в металле распадается, выделяя частицы в мелко дисперсном виде, что придаёт дуралюминию его выдающиеся механические свойства, высокую прочность и твёрдость. В процессе сварки происходит местный перегрев металла, вызывающий резкое снижение механических  свойств соединения. При застывании металла в сварном шве растут крупные кристаллиты. Они создают напряжения, которые делают шов хрупким. Снижение прочности не может быть устранено последующей термообработкой, которая не возвращает металлу ослабленной зоны первоначальных  высоких механических свойств. Сплавы типа дюралюминий Д16, Д1 сваривают точечной сваркой, при которой перегрев и расплавление происходят не по всей длине соединения.

Стыковая контактная сварка

Удовлетворительные результаты даёт контактная сварка алюминия. Стыковая контактная сварка алюминия производится непрерывным оплавлением на машинах с электрическим приводом. Сварочный ток берётся около 15000 A на 1 см2 свариваемого сечения. Величина оплавления составляет от 5 до 12 мм, а величина осадки от 1,5 до 5 мм в зависимости от величины сечения сварного шва. Время непрерывного оплавления колеблется от 30 до 70 периодов переменного тока. Ток выключается в начале осадки, продолжительность  осадки — от 2 до 5 периодов тока.

Контактная точечая сварка

Существенными затруднениями при точечной сварке являются высокая электропроводность алюминия и быстрое за 0,002—0,005 сек. расплавление металла в процессе сварки, что требует быстро перемещать электрод сварочной машины, чтобы поддержать давление и контакт с основным металлом.

Для алюминия и его сплавов точечную сварку применяют к деталям с тощиной 0,4—6 мм. Точечная сварка требует сварочных токов с плотностью 1000 А/мм2, что в 4 раза больше сварочных токов для стали.

Хорошие результаты даёт точечная сварка аккумулированной энергией. В промышленности применяется конденсаторная точечная сварка алюминия. Электроды для точечной сварки алюминия рекомендуется изготовлять из медных сплавов с высокой твёрдостью, высокой электропроводностью и теплопроводностью. Удовлетворительные результаты даёт сплав ЭВ.При прилипании алюминия к медному электроду необходима немедленная зачистка электрода со снятием тонкого слоя металла, иначе неизбежно повреждение поверхности точек. Необходимо интенсивное охлаждение электродов проточной водой. Возможна также и шовная сварка алюминия, но для этой цели необходимы мощные машины с ионными прерывателями.

 

Литература [2]
1   2   3   4   5   СледующаяОглавление